学术交流
位置: 首页 > 学术交流 > 正文

非线性泛函分析及其应用青年学者论坛

时间:2024-04-25来源:数学学院

报告时间:2024年4月26日(星期五)8:40-16:40

报告地点:翡翠湖校区科教楼B1710室

举办单位:数学学院

学术报告信息(一)

报告题目: Single-peak and multi-peak solutions for Hamiltonian elliptic systems in dimension two

报告时间:2024年4月26日(星期五)8:40-9:40

:张建军 教授

工作单位:重庆交通大学

报告简介

In this talk, we are concerned with the Hamiltonian elliptic system in dimension two involving exponential nonlinearities. When the potential admits one or several local strict minimum points, we show the existence and concentration of single-peak and multi-peak semiclassical states. In addition, positivity of solutions and uniqueness of local maximum points of solutions are also studied. Our theorems extend the results of Ramos and Tavares [Calc. Var. 31 (2008) 1-25], where the nonlinearities have polynomial growth. It seems that it is the first attempt to obtain multi-peak semiclassical states for Hamiltonian elliptic system with exponential growth.

报告人简介

张建军,重庆交通大学数学与统计学院教授,重庆数学学会副理事长,重庆市高校中青年骨干教师。博士毕业于清华大学,先后在南开大学陈省身数学研究所、巴西帕拉伊巴联邦大学、意大利因苏布里亚大学从事博士后研究。研究领域主要包括非线性分析中的变分与拓扑方法,非线性椭圆方程等。主持国家自然科学基金面上项目2项、国际合作与交流项目1项以及意大利伦巴第研究员基金(GLOCAL ERC)等。在非线性薛定谔方程的半经典状态和规范化解的研究等方面取得了一些结果,在《J.Math.Pures Appl.》《Comm. PDE》,《J. Diff. Eqs》,《J. London Math. Soc.》,《Nonlinearity》等国际主流学术刊物上。

学术报告信息(二)

报告题目: Convergence problem of the generalized Kadomtsev-Petviashvili II equation in anisotropic Sobolev space

报告时间:2024年4月26日(星期五)9:40-10:40

:杨美华 教授

工作单位:华中科技大学

报告简介

This talk is about the generalized Kadomtsev-Petviashvili II (gKP-II) equation with data in the anisotropic Sobolev space u_{t}-|D_{x}|^{\alpha}u_{x}+\partial_{x}^{-1}\partial_{y}^{2}u+\frac{1}{2} \partial_{x}(u^{2})=0, u(x,y,0)=f(x,y) , with f(x) is a given function which belongs to H^{s_{1},s_{2}}(\mathbf{R}^{2}). We investigate the pointwise convergence problem and uniform convergence  in the anisotropic Sobolev space H^{s_{1},s_{2}}(\mathbf{R}^{2}).

报告人简介

杨美华,华中科技大学数学与统计学院教授,博士生导师。2006年毕业于兰州大学基础数学系,获得理学博士学位。毕业后到南京大学数学系从事博士后研究,在2008年博士后出站后进入华中科技大学数学与统计学院工作。2011年被华中科技大学聘为教授。主要从事无穷维耗散动力系统的长时间动力学行为的研究、在深入研究无穷维动力系统全局吸引子存在性的基础上,重点研究它们的结构以及复杂性。在本专业重要国际期刊《Transactions of the American Mathematical Society》、《Indiana Univ. Math. Journal,》 《Journal of Differential Equations》,《Nonlinearity》等杂志上发表论文多篇。2011年获华中科技大学“学术新人奖”,2012年入选2012年度教育部“新世纪优秀人才支持计划”,主持国家自然科学基金面上项目3项。

学术报告信息(三)

报告题目: Infinitely many Sign-changing normalized solutions of competition-diffusion p-Laplacian systems

报告时间:2024年4月26日(星期五)11:00-12:00

:钟学秀 副研究员

工作单位:华南师范大学

报告简介

In this talk, we are concerned with system of m p-Laplacian Schr\"odinger equations with competition interactions in a bounded regular domain. When the nonlinearities are odd satisfying some suitable assumptions, we can apply the vector genus and descending flow method to establish infinitely many sign-changing normalized solutions. The innovation is that we construct a tangent pseudo-gradient vector field for the energy functional on the constrained manifold, which can be used to find invariant sets of descending flow. The difficulty is reinforced by the p-Laplacian operator and also by the normalized constraint. Since we are dealing with $p>1$ in a unified way, the energy functional may be not regular enough and the p-Laplacian operator is not linear, we cannot benefit from certain classical techniques directly. This is a joint work with Prof. Jianjun Zhang and my students Anjie Feng and Jinfang Zhou.

报告人简介

钟学秀,华南师范大学副研究员,华南数学应用与交叉研究中心青年拔尖引进人才,最新ESI高被引学者。研究方向为运用非线性分析、变分法等方法来研究几何分析学、数学物理中椭圆型偏微分方程和方程组以及某些不等式问题。主持国家青年基金和面上基金各一项。已在J.Differential Geom., J. Math. Pures Appl., Math. Ann., Ann. Sc. Norm. Super. Pisa Cl. Sci. (5),Calc. Var. PDE,J. Differential Equations等国际重要刊物上发表多篇学术论文。在非线性泛函分析和椭圆偏微分方程领域的Li-Lin 公开问题,Sirakov 公开问题,Bartsch-Jeanjean-Soave公开问题等方面获得了重要进展。

学术报告信息(四)

报告题目: Homogenization of Parabolic Systems with Several Spatial and Temporal Scales

报告时间:2024年4月26日(星期五)14:30-15:30

:钮维生 教授

工作单位:安徽大学

报告简介

We report some results on quantitative estimates in the homogenization of second-order parabolic systems with periodic coefficients that oscillate on multiple spatial and temporal scales. The results include the convergence rate and some uniform regularity estimates we obtained recently.

报告人简介

钮维生,安徽大学教授,博士生导师,近年来主要从事偏微分方程与无穷维动力系统均匀化理论的研究,在Math Annalen,Journal of Functional Analysis, Communications in Partial Differential equations, Journal of Differential Equations等期刊上发表多篇论文,先后主持国家自然科学基金面上2项、青年项目,以及安徽省优秀青年基金等多项省部级项目。

学术报告信息(五)

报告题目: Physical states and qualitative analysis of spin-1 BEC in Ioffe-Pritchard magnetic field

报告时间:2024年4月26日(星期五)15:40-16:40

:李孟辉 博士

工作单位:河南师范大学

报告简介

In this talk, I will report some our recent work about Spin-BEC. We study the physical states along with qualitative properties of spin-1 Bose-Einstein condensate in Ioffe-Pritchard magnetic field, two conserved quantities, the number of atoms and the total magnetization are involved in. The presence of the Ioffe-Pritchard magnetic field, which competes dramatically with the harmonic trapping, forces the implementation of new ideas to catch the physical states and analyze their qualitative properties. Based on the ferromagnetic or antiferromagnetic characterization of spin-1 Bose-Einstein condensate, our results support some experimental observations and some numerical analysis on ground states. This is a joint work with Xiao Luo, Juncheng Wei and Maoding Zhen.

报告人简介

李孟辉,博士,河南师范大学讲师。2022年毕业于华中科技大学,获得理学博士学位。主要从事非线性泛函分析和薛定谔方程规范化解的研究。在本专业重要国际期刊《SIAM Journal on Mathematical Analysis 等杂志发表多篇学术论文。

关闭